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diaphragm stiffness due to deformation in the "edge zone", 
kips/in. 

total calculated diaphragm stiffness, kips/in. 

length of the "edge zone" contributing to force on the 
fasteners, in. 

1 width of a shearwall or diaphragm, in. 
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interfacial shear force parallel to the corrugations, 
which occurs along edges that are perpendicular to the 
corrugations, kips/in. 

interf acial shear force perpendicular to the corrugations 
which occurs along edges that are perpendicular to the 
corrugations, kips/in. 

interfacial shear force perpendicular to the corrugations, 
which occurs along edges that are parallel to the corru­
gations, kips/in. 

ultimate strength value of qp, kips/in. 

ultimate strength value of qp I' kips/in. 

ultimate strength value of qt, kips/in. 

ultimate strength value of qt I' kips/in. 

ultimate fastener strength, kips. 

ultimate strength of a fastener with the deck parallel to 
the edge member, kips. 

ultimate strength of a fastener with the deck perpendicular 
to the edge member, kips. 

r width of one rib section, in. 

s width of one up corrugation at the top, in. 

ta average thickness of the concrete, in. 

t effective thickness of the diaphragm, in. e 

t thickness of the steel deck, in. s 

V applied shear force on the slab, kips. 

v maximum shear stress, psi. max 

V applied shear force on the parallel push-off specimen, kips. p 

V ultimate shear force on the parallel push-off specimen, kips. up 

Vt applied shear force on the transverse push-off specimen, kips. 

vut ultimate shear force on the transverse push-off specimen, kips. 
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w weight of the concrete slab, ksi. c 

w
1 

applied vertical load, ksi. 

a coefficient that varies linearly from 3.0 for h/l equal to 1.5 
to 2.0 for h/l equal to 2.0. 

]J coefficient of friction between the steel deck and concrete. 
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e rotation of the concrete about its center. 

p ratio of distributed shear reinforcement on a plane perpen­
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CV 

oult ultimate stress capacity of the steel, ksi. 
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up 

ultimate capacity per unit of projected area of the interface 
in the transverse direction, ksi. 

ultimate capacity per unit of projected area of the interface 
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Ab bending deflection of the diaphragm, in. 

11 "edge zone" displacement in the longitudinal direction, in. p 

A shear deflection of the diaphragm, in. s 

/1t "edge zone" displacement in the transverse direction, in. 

A deflection of the diaphragm due to deformation in the "edge 
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AT total deflection of the diaphragm, in. 

A
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A
2 displacement at west end of north edge beam, in. 
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1. INTRODUCTION 

1. 1. General 

Cold-formed metal deck, composite floor slab systems have become 

more common in recent years. These floor systems reduce or eliminate 

the need for formwork and shoring, reduce field labor costs, and allow 

for the use of a minimum floor thickness. A minimum floor thickness 

results in a minimum weight floor slab system which results in material 

savings in many parts of the entire structure. The steel deck serves 

as formwork during construction. After the concrete cures on top of 

the steel deck, the two materials act together as a composite floor 

slab system. The steel deck provides the principal positive bending 

tension reinforcement. A typical system is shown in Figure 1. 

Composite floor slabs are connected to support beams with arc spot 

welds or shear connectors welded through the steel deck to the support 

beams. Composite action between the steel deck and concrete is 

developed by chemical and mechanical bonding. Mechanical bonding is 

provided by cell geometry and/or mechanical devices such as embossments, 

indentations, holes in the steel deck or transverse wires attached to 

the deck. When shear connectors are used, additional composite action 

is directly developed between the support beams and the concrete. 

Lateral forces on a building are generated by earthquakes or wind. 

These lateral forces are transferred through the plane of the floor slab 

into vertical shear resisting elements and finally into the foundation 

as horizontal shear. Floor slabs are designed to resist gravity loads 

but can also be designed to resist in-plane loads. Throughout this 
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Figure 1. Typical construction utilizing cold-formed steel decking 
with composite support beams (30) 
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report, load applied in a direction normal to the concrete surface will 

be referred to as gravity or vertical load. Load applied in a direction 

parallel to the concrete surface will be referred to as in-plane load. 

A floor slab system, designed to resist in-plane load, is referred to 

as a diaphragm. 

1.2. Objective of Overall Research Program 

The objective of the overall research program is to investigate 

the behavioral and strength characteristics of composite steel-deck 

reinforced concrete floor diaphragms (30). Behavioral character­

istics to be studied are failure mode, stiffness, maximum capacity and 

ductility. The entire research effort has been subdivided into the 

following phases: 

1. Design and construction of a diaphragm test facility and 

performance of pilot tests on diaphragm specimens. 

2. Full-scale testing of a series of diaphragm specimens 

subjected to in-plane loading only. 

3. Testing of one-way slab element tests subjected to vertical 

loads to determine the effect of stud shear connectors on 

shear-bond strength. 

4. Development of an analytical model using finite element 

analysis and definition of significant parameters for design 

equations. 

5. Full-scale testing of composite slabs subjected to combined 

in-plane loads and distributed gravity loads. 
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6. Full-scale testing of composite slabs with different length 

to width ratios. 

7. Investigation of the effects of continuity from adjoining 

floor slab panels. 

Results from the experimental testing will be used to define and 

isolate various failure modes by the determination of the significant 

parameters which affect the diaphragm behavior. These parameters 

could include: 

• deck parameters: strength, stiffness, thickness, cell geometry 

• support framework 

• shear connections 

• 

• 

• 

concrete parameters: strength, stiffness, thickness, type 

specimen configuration: 

loading program 

orientation, length, width 

Phases 1-3 of the research effort have been completed and are 

reported in References 8, 10, 16 and 30. Information presented in 

this report summarizes the work completed in Phase 5 of this research 

project. 

1.3. Objective and Scope of this Study 

The objective of Phase 5 was to experimentally and analytically 

investigate the effects of gravity load on composite floor diaphragm 

behavior. Efforts within Phase 5 included: 

• A detailed review of previous diaphragm tests, gravity 

load tests and methods of analysis. 
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Design and construction of a mechanism to apply a 

distributed vertical load. 

Testing of four full-scale specimens subjected to applied 

in-plane loading only. 

Testing of six full-scale specimens subjected to applied 

in-plane and distributed vertical load. 

Presentation of experimental results and evaluation of 

the test frame and vertical load mechanism. 

• Determination of the effects of distributed vertical load 

• 

• 

on composite diaphragm behavior. 

Evaluation of existing methods of analysis and recommenda­

tion of modifications to existing methods and/or 

determination of new methods of analysis. 

Comparison of analytical and experimental results . 

The primary purpose of these tests was to determine the effects 

of gravity load on composite floor diaphragm behavior. This report 

will include the procedures used and the results obtained from each 

of the efforts listed above. 
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2. REVIEW OF PREVIOUS RESEARCH 

2.1. Gravity Load Research 

Since 1967, an extensive experimental and theoretical investigation 

of gravity load effects on composite floor slabs has been conducted at 

Iowa State University's Engineering Research Institute. This investi­

gation has included over 650 tests on various one-way slab elements, 

continuous slab elements, push-off specimens, and full-sized floor 

slabs. Results from this research are reported in References 15-16, 

24-29, 31. 

Shear~bond was found to be the primary mode of failure for steel 

deck reinforced concrete slabs subjected to gravity load (28). The 

shear-bond mode of failure is characterized by the formation of a 

diagonal crack near the point of applied vertical load or at the third 

point for uniform load (15) and a subsequent loss of bond between 

the steel-deck and concrete between the load point and the end. 

Several equations were developed to predict the gravity load capacity 

of slabs that experience shear-bond failure (31). The design equation 

that was finally accepted was based on a modified version of Equation 

11-6 in the American Concrete Institute (ACI) Code 318-83 (1). 

Results from the tests conducted on the full-scale floor slabs, 

simply supported on all four sides, indicate that the slabs behave 

principally as one-way slabs (29). This behavior is caused by the 

relatively large bending stiffness of the slabs in the direction par­

allel to the corrugations. Results from these tests also indicate 
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that when slabs are subjected to large concentrated loads, some two-way 

action may need to be considered. A procedure for predicting the 

amount of two-way action was developed by Porter and Ekberg (29). 

2.2. Diaphragm Research 

Prior to 1973, no general design equations for steel-deck rein­

forced concrete diaphragms existed. Experimental testing was conducted 

by various manufacturers to develop empirical design equations. This 

testing resulted in the development of several similar design equations 

that varied with manufacturer and deck type. 

The first general design equations for steel deck reinforced 

concrete diaphragms were developed by C.W. Pinkham of S.B. Barnes and 

Associates of Los Angeles, California and published by the Department 

of Defense in a design manual, "Seismic Design of Buildings" (12). 

These empirical equations were based on a "guided cantilever" concept. 

Accurate ultimate load predictions were obtained from these equations 

for only a limited number of composite diaphragms. One possible reason 

for this limited accuracy is that several potential failure modes were 

not considered in the development of these equations. 

An alternate method of analysis was proposed upon completion of 

the first three phases of this project. This proposed method of 

analysis was based on a consideration of the possible failure modes 

listed in Table 1. This list was based on a literature review by 

I.S.U. researchers (30) of prior work completed by various researchers 

(4, 5, 7, 8, 12, 15, 17, 18, 24-29, 31). The possible failure modes 
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Table 1. Failure modes for composite diaphragms 

1. Composite Diaphragm 

a. Concrete Strength 

1. Diagonal tension 
2. Parallel to the deck corrugations 

b. Localized Failure 

c. Stability Failure 

2. Deck / Concrete Interface 

a. Interfacial Shear Parallel to the Corrugations 

b. Interfacial Shear Perpendicular to the Corrugations 

1. Pop-up 
2. Deck foldover 
3. Concrete rib failure 

3. Diaphragm / Edge Member Interface 

a. Arc Spot Welds 

1. Shearing of the weld 
2. Tearing and/or buckling of the deck around the weld 

b. Shear Connectors 

1. Connector shear 
2. Concrete shear failure around the connector 



www.manaraa.com

9 

were divided into three categories based on the location of the failure. 

Composite diaphragm failures occur when the floor slab system is 

behaving as a composite diaphragm at ultimate load. An example of this 

type of failure is diagonal tension failure. Diagonal tension failure 

is characterized by the concrete reaching its principal tensile stress 

limit and diagonal cracks forming at approximately 45° angles relative 

to the fixed edge (Fig. 2). A second type of composite diaphragm 

failure is characterized by a direct shearing of the concrete along a 

line parallel to the deck corrugations (Fig. 2). This failure mode will 

occur if the concrete cover above the top of the deck is thin or the 

shear strength of the concrete is not adequate. Localized failure is a 

third possible type of composite diaphragm failure. This failure mode 

will occur when there is a non-uniform shear distribution in the 

diaphragm and discrete regions of high stress. A fourth example of 

composite diaphragm failure is stability. This failure mode is 

characterized by out-of-plane buckling of the composite diaphragm. 

If shear connectors are not used to transfer in-plane load to the 

concrete, then all of the in-plane load must be transferred to the 

concrete through the interface by interfacial shear forces. This 

interfacial load transfer was assumed to occur in a relatively narrow 

band near the framing members referred to as the "edge zone". If the 

applied interfacial shear forces exceed the interfacial capacity then 

interfacial shear failure will occur. Interfacial shear failure 

parallel to the corrugations is characterized by the concrete moving 

relative to the deck in a direction parallel to the deck corrugations. 
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CRACK PARALLEL 
TO THE CORRUGATIONS ----t•/ 

DIAGONAL TENSION CRACK 

Figure 2. Shear failure of the concrete in diagonal tension 
and cracks parallel to the corrugations 

a) Pop-up 

b) Deck foldover 

c) Concrete rib failure 

Figure 3. Interfacial failure perpendicular to the corrugations 
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When interfacial shear failure perpendicular to the corrugations 

controls, three types of behavior may occur (Fig. 3). If the steel 

deck corrugations are flexible, the concrete ribs will flatten the 

deck. This fail~re was termed deck foldover. If the steel deck 

corrugations are stiff, the concrete ribs will either slide up on 

the corrugations or the concrete ribs will be sheared from the rest 

of the concrete slab. These failure modes were termed pop-up and 

concrete rib failure, respectively. 

Diaphragm to edge member interface failures occur when the load 

carrying capacity of edge connections is exceeded. Arc spot weld 

failure is characterized by a direct shearing of the weld or a 

buckling and/or tearing of the deck near the weld. When stud failure 

occurs, the stud is either sheared from the support beam or the con­

crete around the stud fails. 

Separate equations were developed to predict ultimate capacities 

corresponding to each of the failure modes (30). The lowest predicted 

capacity corresponds to the failure mode that will control. Also, 

equations to predict the initial stiffness were developed. These 

were based in part on the "edge zone" concept. The total diaphragm 

deflection was given by the sum of the bending def fection of the 

equivalent plate girder, the shear deflection of the web and the 

deflection in the "edge zone". Stiffness of the "edge zone" was 

calculated from equations using results from the elemental push-off 

tests. A complete review of equation development is included in 

Section 5.1.3. 
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3. EXPERIMENTAL PROGRAM 

To isolate the effects of gravity load on composite diaphragm 

behavior, similar slabs with and without gravity load were tested. 

Slabs 6, 9, 10 and 15 were subjected to in-plane load only. Slabs 12, 

13, 14, 16, 17 and 18 were subjected to distributed gravity load and 

in-plane load. 

3.1. Composite Floor Slab Specimens 

Slabs 1-18 were all nominal 15 ft. X 15 ft. composite steel 

deck diaphragms. Centerline-to-centerline distance between framing 

beams was 15 ft. The length of the concrete slab and steel deck was 

15 ft. 4 in. and the width was 15 ft. Composite diaphragms were 

connected to the test frame either by studs measuring a nominal 

3/4 in.X 4 1/2 in. after burnoff or by arc spot welds measuring 

3/4 in. in diameter using class E-60s-3 or E-70s-3 (Ms-21G) welding 

wire. Deck panels were connected to each other with 1/8 in. X 1 1/2 in. 

arc seam welds spaced 30 in. on center using 3/32 in. E7018 electrodes 

or E-60s-3 (Ms-21G) welding wire. All slabs were constructed using 

normal weight concrete. The concrete was compacted with an electric 

vibrator during casting and wet cured for 7-14 days under a plastic 

cover. A test parameter summary is given in Table 2. 

Slabs 6 and 17 were constructed using a 16-gauge, 1 1/2 in. deep, 

embossed steel deck (Deck Type 2, Fig. 4). An 18-gauge, 1 1/2 in. 

deep, embossed steel deck was used on Slabs 15 and 16 (Deck Type 7, 

Fig. 5). Slabs 9 and 13 were constructed using a 16-gauge, 3 in. 
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Table 2. Summary of parameters for slab specimens 

Concrete Parameters Steel Deck Parameters 

Slab Norn. Actual Deck Deck Yield Ultimate Connections 
Number Thick. Thick. f'c Type Thick. Strength Strength per 

(in) D (in) (psi) (in) (ksi) (ksi) side 

1 5.50 5.38 5634 1 0.034 41. 7 53.4 30 studs 

2 5.50 5.50 5250 1 0.034 41. 7 53.4 30 studs 

3 5.50 5.65 4068 1 0.034 41. 7 53.4 60 welds 

4 5.50 5.28 3849 1 0.034 41. 7 53.4 60 welds 

5 3.50 3.53 2966 2 0.062 48.2 60.7 30 welds 

6 7.50 7.44 4549 2 0.062 48.2 60.7 60 welds 

7 5.50 5.40 5435 3 0.058 49.7 61.1 60 welds 

8 5.50 5.47 3345 1 0.035 41. 7 53.4 4-6 studsa 
C)-\· \ ~~. 

9 5.50 5.48 5142 4 0.058 51. 8 63.2 60 welds 
9 (pan) 0.057 52.4 64.9 

10 5.50 5.53 3311 5 0.062 40.4 53.4 60 welds 

11 5.50 5. 72 3533 6 0.047 89.7 93.6 60 welds 

12 5.50 5.59 3412 5 0.062 40.4 53.4 60 welds 

13 5.50 5.53 6187 4 0.058 51.8 63.2 60 welds 
13 (pan) 0.057 52.4 64.9 

14 8.00 8.20 3699 5 0.062 40.4 53.4 60 welds 

15 4.00 4.21 2844 7 0.047 89.7 93.6 60 welds 

16 4.00 4.18 2952 7 0.047 89.7 93.6 60 welds 

17 7.50 7.44 4261 2 0.062 46.0 54.4 60 welds 

18 5.50 5.55 3052 5 0.062 40.4 53.4 60 welds 

a4 studs each E-W side, 6 studs each N-S side. 
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2.60" I UO" I .. . . 
Figure 4. Typical view of Deck Type 2 

3.33" 

4.50" 

0.75" 0.75 11 

Figure 5. Typical view of Deck Type 7 
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deep, embossed, cellular deck type (Deck Type 4, Fig. 6). Cellular 

deck consists of a fluted section spot welded to a flat sheet. 

A 16-gauge, 3 in. deep, embossed steel deck was used on Slabs 10, 12, 

14 and 18 (Deck Type 5, Fig. 7). 

Slabs 6, 9 and 10 through 18 were connected to the test frame 

with 240 arc spot welds. These welds were evenly distributed around 

the perimeter of the slab (Figs. 8-10). The number of edge connectors 

used was purposely selected to be adequate to prevent diaphragm to edge 

member interface failure so that the other failure modes would occur. 

An extensive study of diaphragm to edge member interface failures and 

the effects of gravity load on diaphragm to edge member interface 

failures will need to be included in future research. 

3.2. Test Frame 

A cantilever diaphragm test frame with a fixed edge was used. 

The fixed edge models a continuously attached shear wall. Also, in 

most buildings using composite floor systems, an adjacent slab that 

provides restraint against rotation exists on at least one side. The 

free edge models an unbraced frame that provides little restraint 

against lateral loads. Thus, the lateral loads must be transferred 

by the diaphragm into the shear wall. Stiff edge beams were used 

because they provide a more uniform shear stress distribution than do 

flexible support beams. 

The test frame consisted of three large reinforced concrete blocks, 

three perimeter framing beams and two hydraulic cylinders with support 
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Figure 6. Typical view of Deck Type 4 

4. 70" 

7 . 30" 2.025"' .375" 

Figure 7. Typical view of Deck Type 5 
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frames. The test frame had a maximum displacement limit of ±6 inches 

and a maximum working load of ±400 KIPs. A layout of the test frame is 

shown in Figure 11. 

An MTS closed-loop control system with a servo-valve was used to 

control the frame displacements during the test. The set point on the 

MTS servo-controller was manually operated to control the test frame 

displacements. The displacement signal was received from a direct 

current linear variable displacement transducer (DCDT) that was 

connected between the north edge of the test frame and the structural 

tie-down floor and oriented in a direction parallel to the north edge 

beam. This displacement signal was also continuously monitored by 

the data acquisition system. A schematic of the servo-hydraulic 

testing system is shown in Figure 12. 

3.3. Vertical Load Mechanism 

Vertical load was applied to 20 distributed neoprene pads on 

the surface of the specimens with the mechanisms shown in Figure 13. 

Each pad was subjected to the same load. The amount of vertical load 

applied was chosen to model an equivalent distributed load based on 

equivalent shear area in the one-way direction (parallel to the corru­

gations). 

Each vertical load mechanism consisted of a hydraulic cylinder 

wfth a hollow piston, 1/2 in. diameter wire rope, 1/2 in. diameter 

threaded steel rod, 3 in. X 3 in. structural tubes used as spreader 

beams, steel plates and various connections. Wire rope was used so 
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that, as the diaphragm was cycled in-plane, the vertical load mechanism 

would apply little lateral restraint. Four mechanisms were used to 

apply load to four surf ace pads each and two mechanisms were used to 

apply load to two surface pads each (Fig. 13). The hydraulic cylinders 

that were used in mechanisms applying load to the same number of pads 

were connected with parallel hydraulic hoses to the same pump. 

Two separate pumps were used to apply the vertical load so that the 

amount of load being applied to each pad was the same. The vertical 

mechanisms had a design capacity of 200 psf and the hydraulic cylinders 

had a maximum capacity of 60 kips. 

The amount of load being applied was manually controlled by 

adjusting the amount of hydraulic pressure being applied by the pumps. 

Strain gages were mounted on the bottom side of the spreader beams to 

measure the amount of load being applied (Fig. 13). These strain 

gages were monitored by the data acquisition system and readings 

obtained were displayed at every load point. 

3.4. Data Acquisition System and Test Instrumentation 

The data acquistion system (DAS) used on Slabs 10-18 consisted of 

a 150 channel Hewlett Packard (HP) model 3497A data acquisition control 

unit 'interfaced to an HP model 85 micro-computer which was interfaced 

to two disk drives, a digital plotter and a printer. This DAS recorded 

all strain gage, DCDT and load cell readings on magnetic disks at every 

load point. Also, between load points as the diaphragm was being dis-
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placed in-plane, this DAS continuously monitored the in-plane load 

cells and the in-plane displacement DCDT and plotted load versus dis­

placement with the digital plotter. An illustration of the load versus 

displacement results are indicated in a plot generated for Slab 12 as 

shown in Figure 14. Readings between load points were taken at the 

rate of one reading per second and approximately 30 readings were taken 

between any two load points depending on the rate of loading. 

In-plane loads were measured by axial load cells that were con­

nected in series with each of the hydraulic cylinder rods. Vertical 

loads were measured with strain gages that were placed on the bottom 

of the spreader beams that were distributing the load. The axial load 

cells and spreader beams were calibrated in a Satec test machine. 

Since hydraulic systems were used to apply both the in-plane and ver­

tical loads, hydraulic pressure readings were taken and used to provide· 

a check on the amount of load being applied. 

In-plane and vertical displacements were measured with DCDTs 

and mechanical dial gages. A DCDT located near the northeast corner 

of the slab was used to provide the in-plane displacement feedback to 

the MTS servo-controller on all tests. Mechanical dial gages and DCDTs 

were also used to measure concrete movement relative to the steel deck, 

interfacial slip, along the edges of the diaphragm. 

Uniaxial and three-gage rosette strain gages were used to measure 

strains at various locations (Fig. 15) on the d·iaphragm specimens. 

On Slab 10, embedment strain gages were used to measure strains in the 

concrete. These gages were oriented parallel to the deck corrugations. 
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Uniaxial strain gages, attached to the webs of the W24 X 76 edge beams 

(Fig. 16), were used to measure strains along the edge beams. 

During the test, cracks were marked and numbered with black 

markers. Pictures were taken with a camera mounted above the slab to 

record surface crack propagation. Pictures were also taken at various 

locations near the specimen. When available, a video camera was used 

to visually record slab behavior during the test. A tape recorder was 

used to verbally record observations made by researchers. 

3.5. Load Program 

A load program was established based on the expected design ver­

tical load and in-plane displacement. A load point was assigned 

to each program increment where instrumentation readings were taken. 

This program was based on in-plane displacement control and at each 

load point the displacement was held constant. 

The amount of vertical load applied was based on the design gravity 

load. The design gravity load was calculated by using the criteria 

given in Reference 28, and the m and k values listed in Table 3. 

These m and k values were derived from elemental one-way tests as 

described in Reference 28. Slabs 12, 13, 14, 16 and 17 were subjected 

to a distributed vertical load approximately equal in magnitude to 

their design gravity loads. Slab 18 was subjected to a distributed 

vertical load equal in magnitude to approximately twice its design 

gravity load. 
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Prior to any in-plane loading, the specimen was incrementally 

subjected to the established vertical load for the given specimen 

(Table 3). With the applied vertical load being held constant, the 

slab was subjected to in-plane loads with progressively increasing 

displacement limits (Fig. 17). The initial cyclic limit was selected 

to be a displacement in the working load range of the slab. This limit 

was approximately doubled until a 1.000 in. displacement was reached. 

At every displacement limit, a minimum of three reversed displacement 

cycles were completed. If the load did not reach 95 percent of the 

previous cycles load after three cycles, additional cycles were 

completed at this displacement limit until this criterion was met. 

Four extra cycles were the most ever required. 

Table 3. Design and applied vertical loads 

A ysb Design Applied 
Slab Deck k s 

Load Load m 

Number Type (in2 /ft) (in) (psf) (psf) 

12 5 7126 0.349 1.023 1. 531 72 65 

13 4 11857 0.375 1. 675 0.843 204 200 

14 5 7126 0.349 1.023 1. 531 118 135 

16 7 10838 0.089 0.755 0.943 40 35 

17 2 11592 0.013 1.046 0.61 96 100 

18 5 7126 0.349 1.023 1. 531 72 135 
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4. EXPERIMENTAL RESULTS 

4.1. Slab Description and Behavior 

This section includes a brief description of all slabs that were 

included in this study and a detailed description of slab behavior 

during the tests. Throughout this section, concrete movement relative 

to the steel deck will be referred to as slip. Slip in a direction 

parallel to the corrugations will be referred to as parallel slip. 

Slip in a direction perpendicular to the corrugations will be referred 

to as transverse slip. 

4.1.1. Deck~~ 

Slabs 6 and 17 were constructed using a 16-gauge, 1 1/2 in. deep, 

embossed steel deck (Deck Type 2, Fig. 4). The steel deck was oriented 

so that the smaller width corrugations were up. This orientation made 

the steel deck stiff in the transverse direction and prevented deck 

foldover. Both slabs had a nominal concrete thickness of 7 1/2 in. 

This large thickness was used to prevent diagonal tension failure. 

4.1.1.1. Slab 6 
~~ - Slab 6 was tested as part of a previous 

research effort. Experimental results from this slab are reported by 

Porter and Greimann (30). The load program for Slab 6 consisted of 

reversed cyclic, in-plane loading with displacement limits of 0.025, 

0.050, 0.100, 0.200, 0.400 and 1.000 in. A summary of experimental 

results for Slab 6 is included next to provide a basis for comparison 

with Slab 17. 

Initial signs of distress were observed when the frame was dis-

placed 0.025 in. to the east. Parallel slip of 0.002 in. and transverse 
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slip of 0.003 in. occurred near the corners of the diaphragm while 

cycling at this displacement limit. The magnitude of parallel and 

transverse slip increased as displacement limits were increased. 

The parallel slip magnitude increased at a faster rate than the 

tranverse slip magnitude. 

A maximum load of 147 kips (Fig. 18) was reached while moving to a 

displacement of 0.100 in. The mode of failure at ultimate for this 

slab was interfacial shear parallel to the corrugations. The steel deck 

slipped relative to the concrete primarily in a direction parallel to 

the corrugations at ultimate. While cycling at a displacement limit of 

0.100 in., the stiffness of the diaphragm slowly degraded. 

When the frame was displaced 0.400 in. east, the steel deck moved 

relative to the concrete as shown in Figure 19. Slip both parallel 

and transverse to the corrugations occurred but the largest amount 

occurred parallel to the corrugations. Movement between the frame 

and steel deck was also measured. This movement was less than or 

equal to 0.002 in. at all measurement locations. While cycling at a 

displacement limit of 1.000 in., the concrete continued to slip 

relative to the deck. No cracks formed on the surface of the slab 

throughout the entire test. 

4.1.1.2. Slab 17 Slab 17 was tested as part of this research 

effort. The purpose of Slab 17 was to study the behavioral changes 

caused by applying a distributed vertical load of 100 psf in addition 

and prior to in-plane load. The load program for this slab included 

the following steps. Vertical load was applied in increments of 
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20 psf until a total applied load of 100 psf was reached. With the 

vertical load held constant, this slab was subjected to the same 

reversed cyclic, in-plane load program as Slab 6. 

When the slab was subjected to a distributed vertical load of 100 

psf, the center of the diaphragm displaced 0.034 in. down. No slip 

greater than or equal to 0.001 in. had occurred. Parallel slip of 

0.003 in. and transverse slip of 0.003 in. occurred while cycling at 

a displacement limit of 0.025 in. The amount of slip both parallel 

and transverse to the corrugations increased as in-plane displacement 

limits were increased. The parallel slip magnitude increased at a 

faster rate than the transverse slip magnitude. 

A maximum load of 146 kips (Fig. 20) was reached while moving to 

a displacement limit of 0.400 in. At this point, the steel deck moved 

relative to the concrete as shown in Figure 21. Slip both parallel 

and transverse to the corrugations occurred. The magnitude of parallel 

slip was much larger than the magnitude of transverse slip. Movement 

between the steel deck and frame was also measured. This movement 

was less than 0.004 in. The mode of failure at ultimate was inter­

facial shear parallel to the corrugations. No surface cracks formed 

while cycling at a displacement limit of 0.400 in. As cycling con­

tinued, the stiffness of the diaphragm slowly degraded. 

While moving to a displacement limit of 1.000 in., diagonal surface 

cracks appeared. The stiffness of the diaphragm was significantly 

reduced when these diagonal cracks formed (Fig. 20). A vertical 

displacement of 1.277 in. was measured at the center of the diaphragm 
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after these diagonal cracks formed. After three complete reversed 

cycles at a displacement limit of 1.000 in were completed, the dia­

phragm was still able to carry the applied vertical load of 100 psf. 

4.1.1.3. Comparison of Slab 12 with Slab~ The behavior of 

Slabs 6 and 17 was very similar. Both slabs failed in interfacial 

shear parallel to the corrugations and had nearly the same ultimate 

in-plane capacity. Slab 6 reached an ultimate load of 147 kips while 

moving to a displacement limit of 0.100 in. Slab 17 reached an ultimate 

load of 146 kips while moving to a displacement limit of 0.400 in. 

To compare the amount of interfacial slip, average parallel and 

transverse slip versus in-plane displacement was plotted (Fig. 22). 

Average slip was determined by averaging all slip measurements taken 

at locations within 12 in. of the diaphragm's corners. Parallel slip 

for both slabs was nearly the same. Transverse slip for Slab 17 was 

was less than the transverse slip for Slab 6. Vertical load had little 

effect on the amount of parallel slip but significantly reduced the 

amount of transverse slip. 

An average vertical displacement was calculated by taking the 

average of measurements recorded from two DCDTs located near the center 

of the diaphragm. The vertical displacements for Slabs 6 and 17 are 

illustrated (Fig. 23) by a plot of average vertical displacement versus 

nominal cyclic displacement. Vertical displacements through ultimate 

for both slabs were less than 0.050 in. Large vertical displacements 

occurred on Slab 17 after cracks formed on the top surface of the 

diaphragm while cycling at a displacement limit of 1.000 in. 
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4.1.2. Deck~~ 

Slabs 9 and 13 were constructed using a 16-gauge, 3 in. deep, 

embossed, cellular deck type (Deck Type 4, Fig. 6) .. This type of 

deck consists of a fluted section spot welded to a flat sheet. 

This flat sheet makes cellular steel deck stiffer than non-cellular 

steel deck in both directions transverse and parallel to the corru-

gations. Both slabs had a nominal concrete thickness of 5 1/2 in. 

4.1.2.1. Slab 9 --- Slab 9 was tested as part of a previous 

research effort. Experimental results from Slab 9 are reported by 

Porter and Greimann (30). The load program for Slab 9 consisted of 

in-plane loading with displacement limits of 0.025, 0.050, 0.100, 

0.200, 0.400 and 1.000 in. A summary of experimental results from Slab 

9 are included next to provide a basis for comparison with Slab 13. 

When the front edge of the test frame was displaced 0.050 in. 

east, a diagonal crack propagated across the southwest corner of 

the concrete slab (Fig. 24). Another diagonal crack formed across the 

northwest corner when the frame was displaced 0.100 in. west (Fig. 24). 

As cycling continued at this displacement limit, no new cracks formed 

and the stiffness of the diaphragm stabilized. 

While moving to a displacement limi't of 0.200 in. east, a diagonal 

crack appeared across the northeast corner of the diaphragm (Fig. 24). 

A maximum load of 220 kips (Fig. 25) was reached while moving to this 

displacement limit of 0.200 in. As cycling continued, diagonal cracks 

continued to form in both directions. The stiffness of the diaphragm 

degraded (Fig. 25). Corner sections of concrete began to slip out 
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SURFACE IN-PLANE IN-PLANE 
CRACK DISPLACEMENT LOAD 

NUHBER (in) (KIPs) 

1 0.050 east 82 

2 0. 100 west 166 

3 0.200 east 214 

-----... N 

2 
1 

3 

Figure 24. Top surface crack pattern for Slab 9 
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parallel to the corrugations. While cycling at a displacement limit 

of 1.000 in., welds along the seams between the deck panels and welds 

along the north and south edges failed. Deck panels began to slip 

relative to one another along the seams. This relative displacement, 

along the seams, will be referred to as seam slip. 

4.1.2.2. Slab 13 Slab 13 was tested as part of this 

research effort. The purpose of Slab 13 was to study the behavioral 

changes caused by applying a distributed vertical load of 200 psf 

in addition and prior to in-plane load. The load program for this 

slab included the following steps. Vertical load was applied in 

increments of 40 psf until a total applied vertical load of 200 psf 

was reached. With vertical load held constant at 200 psf, the slab 

was subjected to the same reversed cyclic, in-plane load program as 

Slab 9. 

While cycling at displacement limits of 0.025, 0.050 and 0.100 in., 

no cracks appeared on the surface of the diaphragm. A transverse 

slip of 0.013 in. and a parallel slip of 0.004 in. occurred while 

cycling at a displacement limit of 0.100 in. A maximum load of 250 

kips (Fig. 26) was reached while moving to a displacement limit of 0.200 

in. No surface cracks were observed at this point. While cycling at 

this displacement limit, short surface cracks appeared parallel to 

the corrugations in the southeast and northeast corners (Fig. 27). 

After these cracks appeared, a diagonal crack formed across the south-

west corner. Parallel slip of 0.017 in. and transverse slip of 0.021 

in. occurred while cycling at this displacement limit. 
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Figure 26. Load-displacement diagram for Slab 13 
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SURFACE IN-PLANE IN-PLANE 
CRACK DISPLACEMENT LOAD 

NUMBER (in) (KIPs) 

1 0.200 west 237 

2 0.200 east 199 

3 0.200 east 193 

4 0.400 east 240 

N 

2 

4 
4 

1 1 

Figure 27. Top surface crack pattern for Slab 13 
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While moving to a displacement limit of 0.400 in., a load of 248 

kips was reached and additional diagonal surface cracks appeared 

across the southwest corner of the concrete slab (Fig. 27). Additional 

diagonal cracks in both directions formed on the surface of the slab 

as cycling continued at this displacement limit. When these cracks 

formed, the stiffness of the diaphragm was reduced (Fig. 26). More 

diagonal cracks appeared while cycling at a displacement limit of 

1.000 in. Welds failed along the north and south edges and along 

the seams and seam slip started to occur. After the in-plane load 

program was completed, the center of the diaphragm displaced down 

1.174 in. At this point, the diaphragm was still able to carry the 

applied distributed vertical load of 200 psf. 

4.1.2.3. Comparison of Slab 13 with Slab 9 The behavior of 

Slabs 9 and 13 was very similar. Both slabs failed in diagonal tension 

and reached ultimate loads while cycling at a displacement limit of 

0.200 in. Slab 13 had a concrete compressive strength of 6187 psi and 

an ultimate capacity of 250 kips. Slab 9 had a concrete compressive 

strength of 5142 psi and an ultimate capacity of 220 kips. 

An average slip was determined by taking the average of all slip 

measurements taken at locations less than 12 in. from the corners of 

the diaphragm. To compare the amount of interfacial slip, the average 

parallel and transverse slip versus nominal in-plane displacemeQt 

was plotted (Fig. 28). Parallel slips for both slab's were approx­

imately the same. Transverse slips for both slabs were similar prior 
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to ultimate. After ultimate, Slab 13 experienced less transverse slip 

than Slab 9. Vertical load had little effect on parallel slip and 

transverse slip before ultimate but significantly reduced the amount 

of transverse slip after ultimate. 

An average vertical displacement was calculated by taking the 

average of measurements recorded from two DCDTs located near the center 

of the diaphragm. Vertical displacements for Slabs 9 and 13 are 

illustrated by a plot (Fig. 29) of average vertical displacement versus 

nominal cyclic displacement. Prior to ultimate, the vertical displace-

ment of Slab 13 was larger than the vertical displacement of Slab 9. 

After cracks formed on the top surface of Slab 13, large vertical 

displacements occurred. 

4.1.3. Deck~~ 

A 16-gauge, 3 in. deep, embossed steel deck (Deck Type 5, Fig. 7) 

was used on Slabs 10, 12, 14 and 18. Slabs 10, 12 and 18 had a 

nominal concrete thickness of 5 1/2 in. Slab 14 had a nominal concrete 

thickness of 8 inches. This large thickness was used on Slab 14 to 

prevent diagonal tension failure. Slabs 10, 12, 14 and 18 were all 

tested as part of this research project. 

4.1.3.1. Slab 10 The purpose of Slab 10 was to provide 

a control slab without vertical load that could be used for comparison 

with other slabs with vertical load. The load program for Slab 10 

included reversed cyclic, in-plane loading with displacements limits 

of 0.025, 0.050, 0.100, 0.200, 0.400 and 1.000 in. 
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Initial signs of distress were observed while cycling at a dis-

placement limit of 0.100 in. At this displacement limit, diagonal 

cracks at the seams formed on the north and south faces of the slab. 

Parallel slip of 0.018 in. and transverse slip of 0.025 in. occurred. 

When the frame was displaced 0.200 in. west, a diagonal, surface crack 

appeared across the southeast corner (Fig. 30). A short surface crack 

near the northwest corner and parallel to the west edge also appeared. 

Slab 10 reached a maximum load of 161 kips (Fig. 31) while cycling 

at a displacement limit of 0.400 in. The mode of failure at ultimate 

for this slab was diagonal tension. Diagonal cracks appeared across 

the northeast and southwest corners of the slab prior to ultimate load 

when the frame was displaced 0.400 in to the east. When the frame 

was moved 0.400 in. to the west, ultimate load was reached and a diag-

onal crack formed across the northwest corner of the slab (Fig. 30). 

The stiffness of the diaphragm was significantly reduced after these 

diagonal cracks formed. Additional diagonal cracks appeared in both 

directions while cycling at a displacement limit of 1.000 in. 

4.1.3.2. Slab 12 
~~ ~ 

The purpose of Slab 12 was to study 

behavioral changes caused by applying a distributed vertical load of 

65 psf in addition and prior to in-plane load. This diaphragm's load 

program included the following steps. Vertical load was applied in 

increments of 13 psf until a total applied vertical load of 65 psf 

was reached. With this vertical load held constant, the diaphragm 

was subjected to the same reversed cyclic in-plane load program as 

Slab 10. 
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SURFACE IN-PLANE IN-PLANE 
CRACK DISPLACEMENT LOAD 

NUMBER (in) (KIPs) 

1 0.200 west 132 

2 0.400 east 138 

3 0.400 west 153 

-----N 

3 3 1 

3 
2 

1 

Figure 30. Top surface crack pattern for Slab 10 
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Figure 31. Load-displacement diagram for Slab 10 
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The center of the diaphragm displaced down 0.022 in. when the 

total vertical load of 65 psf was applied. While cycling at a dis­

placement limit of 0.100 in., 0.011 in.·of parallel slip and 0.014 in. 

of transverse slip occurred. Short surface cracks appeared parallel 

to the corrugations near the southwest, northeast and southeast corners 

of the slab (Fig. 32) while cycling at a displacement limit of 0.200 in. 

A maximum load of 180 kips (Fig. 33) was reached while moving to 

a displacement limit of 0.400 in. A diagonal crack appeared across 

the southwest corner of the concrete slab at this point. With the 

displacement held constant at 0.400 in., the in-plane load dropped 

9 kips before stabilizing. Several more diagonal cracks formed 

while cycling at this displacement limit. The in-plane and vertical 

stiffness of the diaphragm degraded significantly while cycling at 

this displacement limit and the center of the diaphragm displaced down 

0.268 in. While cycling at a displacement limit of 1.000 in., more 

diagonal surface cracks appeared and the center of the diaphragm 

displaced down 1.524 in. The diaphragm was still able to carry the 

applied vertical load of 65 psf after the in-plane load program had 

been completed. 

4.1.3.3. Slab 14 Slab 14 was tested to determine the 

effects of gravity load on diaphragms that do not fail in diagonal 

tension. The load program for Slab 14 included the following steps. 

Vertical load was applied in increments of 27 psf until a total 

applied vertical load of 135 psf was reached. With this distributed 
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SURFACE IN-PLANE IN-PLANE 
CRACK DISPLACEMENT LOAD 

NUMBER (in) (KIPs) 

1 0.200 east 147 

2 0.200 west 139 

3 0.200 west 127 

4 0.400 east 171 

----~N 

1 

4 

3 2 

Figure 32. Top surface crack pattern for Slab 12 
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vertical load held constant, the diaphragm was subjected to the same 

reversed cyclic, in-plane load program as Slab 10. 

Initial signs of distress were observed while cycling at a 

displacement limit of 0.100 in. Parallel slip of 0.018 in. and trans­

verse slip of 0.017 in. was measured. As displacement limits were 

increased, the amount of parallel and transverse slip also increased. 

The parallel slip magnitude increased at nearly the same rate as the 

transverse slip magnitude. 

While moving to a displacement limit of 0.400 in., a maximum load 

of 208 kips (Fig. 34) was reached. The mode of failure at ultimate 

for this slab was interfacial slip both parallel and transverse to the 

corrugations. Both parallel and transverse slip occurred. Elements 

of the composite diaphragm and the test frame moved relative to each 

other as shown in Figure 35 when the frame was moved to a displacement 

limit of 0.400 in. Parallel slip of 0.076 in. and transverse slip of 

0.072 in. occurred. Three complete reversed displacement cycles were 

completed at a limit of 0.400 in. and no surface cracks appeared. 

At a displacement of 0.700 in., a diagonal surface crack appeared. 

The in-plane load dropped 35 kips when this crack appeared (Fig. 34). 

Additional diagonal surface cracks appeared while cycling at a dis­

placement limit of 1.000 in. The stiffness of the diaphragm was 

reduced by the formation of these diagonal cracks. A displacement of 

1.588 in. down was measured at the center of the diaphragm. After the 

in-plane load program was completed, the diaphragm was still able to 

carry the applied vertical load of 135 psf. 
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Figure 35. lnterfacial slip diagram for Slab 14 
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4.1.3.4. Slab 18 
~~ ~ 

The purpose of Slab 18 was to study the 

behavioral changes caused by applying a distributed vertical load of 

135 psf in addition and prior to in-plane load. This slab's load 

program was similar to the load program used on Slab 14. Vertical 

load was applied in increments of 27 psf until a total applied load 

of 135 psf was reached. With the vertical load held constant, the 

slab was then subjected to the same in-plane load program as Slab 10. 

The center of the diaphragm displaced down 0.122 in. when the 

vertical load of 135 psf was applied. Parallel slip of 0.018 in. and 

transverse slip of 0.017 in. occurred while cycling at a displacement 

limit of 0.100 in. The amount of parallel and transverse slip 

increased as displacement limits were increased. 

Slab 18 reached a maximum load of .161 kips (Fig. 36) when the 

frame displaced 0.400 in. east. While moving to this displacement, 

diagonal cracks appeared across the southwest and northeast corners 

of the diaphragm (Fig. 37). Both the in-plane and vertical stiffnesses 

were reduced when these cracks formed. The center of the diaphragm 

displaced 0.411 in. down. Surface cracks, parallel to the east and 

west edges and in approximately 3 ft. from the east and west edges 

(Fig. 37) appeared after the diagonal cracks had formed. Additional 

diagonal surface cracks formed as cycling continued. After the 

in-plane load program was completed, a vertical displacement of 

2.520 in. was measured at the center of the diaphragm. At this 

point, the diaphragm was still able to carry the distributed vertical 

load of 135 psf. 
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Figure 37. Top surface crack pattern for Slab 18 
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4.1.3.5. Comparison of Slabs 12, 14 and ll3_ with Slab lQ 

The behavior of Slabs 10, 12 and 18 was very similar. These slabs 

all failed in diagonal tension. Slabs 10, 12 and 18 had concrete 

compressive strengths of 3311, 3412 and 3052 psi and ultimate capaci­

ties of 161, 180 and 161 kips, respectively. Slab 14 had a nominal 

concrete thickness of 8 in. and failed in interfacial slip. The 

amount of interfacial slip was compared by plotting average parallel 

and transverse slip versus nominal in-plane displacement (Fig. 38). 

Average slip was determined by taking the average of all slip measure­

ments taken at locations within 12 in. from the corners of the slab. 

Slab 14 experienced larger parallel and transverse slips than Slabs 

10, 12 or 18. Slab 18 slipped less than Slab 10 in the transverse 

direction but more than Slab 10 in the parallel direction. Slab 12 

slipped less than Slab 10 in both directions. 

Vertical displacements for Slabs 10, 12, 14 and 18 are illustrated 

by a plot of average vertical displacement versus nominal cyclic dis­

placement (Fig. 39). Average vertical displacement was calculated by 

averaging measurements recorded by two DCDTs located near the center 

of the diaphragm. Prior to ultimate load, the vertical displacements 

of Slabs 10, 12 and 14 were less than 0.100 in. The vertical displace­

ment of Slab 10 remained small throughout the entire test. Slabs 12 

and 14 experienced large vertical displacements after cracks formed 

on the top surfaces of these diaphragms. Slab 18 experienced large 

vertical displacements even before ultimate load was reached. 
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4.1.4. Deck~ 7 

Slabs 15 and 16 were constructed using an 18-gauge, 1 1/2 in. 

deep, embossed steel deck (Deck Type 7, Fig. 5). This deck was 

oriented so that the smaller width corrugations were down. This 

orientation saves concrete and is commonly used in practice. Both 

slabs had a nominal concrete thickness of 4 in. Slabs 15 and 16 

were tested as part of this research effort. 

4.1.4.1. Slab 15 Slab 15 was tested to provide a control 

slab for comparison with Slab 16. The load program for Slab 15 included 

reversed cyclic, in-plane loading with displacement limits of 0.025, 

0.050, 0.100, 0.200, 0.400 and 1.000 in. 

While the slab was cycled at a displacement limit of 0.050 in., 

parallel slip of 0.007 in. and transverse slip of 0.013 in. occurred. 

Concrete in the down corrugations near the north and south edges of 

the diaphragm, sheared from the concrete slab when the test frame 

was cycled at a displacement limit of 0.100 in. This behavior was 

described as concrete rib failure in Section 2.2 and is shown in 

Figure 3. The concrete ribs that had been sheared from the concrete 

slab did not slip. The rest of the concrete slab experienced transverse 

slip of 0.032 in. and parallel slip of 0.019 in. As cycling continued 

at a displacement limit of 0.200 in., more concrete ribs sheared from 

the concrete slab. 

An ultimate load of 103 kips (Fig. 40) was reached while moving 

to a displacement limit of 0.400 in. The steel deck moved relative 

to the concrete as shown in Figure 41 at this point. Slip both parallel 
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Figure 41. Interfacial slip diagram for Slab 15 
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and transverse to the corrugations occurred. As cycling continued at 

a displacement limit of 0.400 in., the diaphragm's stiffness slowly 

degraded. No surface cracks formed while cycling at this displacement 

limit. 

While cycling at a displacement limit of 1.000 in., diagonal 

cracks appeared across the surface of the diaphragm. The diaphragm's 

load carrying capacity was reduced when these diagonal cracks formed 

(Fig. 40). After the test had been completed, the top concrete surface 

was removed to reveal the extent of concrete rib failure. The concrete 

ribs that had been sheared from the rest of the slab extended inwards 

18 in. from the north and south edges. 

4.1.4.2. Slab 16 The purpose of Slab 16 was to study the 

behavioral changes caused by applying a distributed vertical load of 

35 psf in addition and prior to in-plane load. Vertical load was 

applied in increments of 7 psf until a total applied vertical load 

of 35 psf was reached. With the vertical load held constant, the 

diaphragm was subjected to tfe same in-plane load program as Slab 15. 

When the vertical load was applied, the center of the diaphragm 

displaced down 0.081 in. No parallel or transverse slip occurred when 

the vertical load was applied. Parallel slip of 0.007 in. and trans-

verse slip of 0.008 in. occurred while cycling at a displacement limit 

of 0.050 in. Most of the concrete in the down ~orrugations sheared from 

the rest of the concrete slab while"cycling at a displacement limit of 

0.100 in. This concrete rib failure is described in S~ction 2.2 and 

is shown in Figure 3. 
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A maximum load of 124 kips (Fig. 42) was reached while moving to 

a displacement limit of 0.400 in. Diagonal cracks appeared across 

the surface of the concrete slab at this point (Fig. 43). With the 

in-plane displacement held constant at 0.400 in., the in-plane load 

dropped 40 kips before stabilizing. The mode of failure at ultimate 

for this slab was diagonal tension failure of the concrete slab. More 

diagonal cracks appeared as cycling continued at displacement limits 

of 0.400 and 1.000 in. After the in-plane load program was completed, 

the center of the diaphragm displaced down 2.517 in. The diaphragm 

was still able to carry the applied vertical load of 35 psf. After 

the test was completed, the concrete slab was removed to reveal the 

extent of concrete rib failure. The ribs that had sheared from the 

concrete slab and remained in the down corrugations extended inwards 

from the north and south ends 18 in. 

4.1.4.3. Comparison of Slab 16 with Slab 15 Slab 15 

experienced concrete rib failure and had an ultimate capacity of 103 

kips. Slab 16 was constructed exactly like Slab 15 and was subjected 

to an applied vertical load of 35 psf in addition and prior to being 

loaded in-plane. Slab 16 failed in diagonal tension and had an ultimate 

capacity of 124 kips. 

The amount of interfacial slip was compared by plotting average 

slip versus displacement (Fig. 44). Average slip was determined by 

taking the average of all slip measurements taken at locations within 

12 in. of the corners of the diaphragm. Slab 16 slipped less than 

Slab 15 in both the parallel and transverse directions. 



www.manaraa.com

ll:ll:l. 00 

LOAD CKIPS> 

-1. l:ll:ll:l 

+ indicate load points 

-ll:ll:l. l:ll:l 

Figure 42. Load-displacement diagram for Slab 16 

l. l:ll:ll:l 
(in.) 



www.manaraa.com

SURFACE 
CRACK 

NUMBER 

1 

1 

72 

IN-PLANE 
DISPLACEMENT 

(in) 

0.400 east 

IN-PLANE 
LOAD 

(KIPs) 

84 
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An average vertical displacement was calculated by taking the 

average of measurements recorded from two DCDTs located near the 

center of the diaphragm. Average vertical displacement is illus­

trated by a plot of average vertical displacement versus nominal 

in-plane displacement (Fig. 45). Prior to ultimate, the vertical 

displacement of both slabs was less than 0.200 in. Vertical dis­

placements for both slabs remained small until cracks appeared on the 

surface of .the slabs. Large vertical displacements occurred after 

surface cracks appeared. After the in-plane load program was completed, 

the center of Slab 16 displaced down 2.517 in. 

4.2. Measured Results 

Measured results helped to identify general behavioral trends both 

before and after ultimate load. This section includes results from 

strain measurements. 

A variety of uniaxial and rosette concrete surface gages and 

concrete embedment gages were used to measure in-plane strain distribu­

tions across the diaphragms during each test. Rosettes were used to 

identify principal strains and principal strain directions. When the 

diaphragms were subjected to vertical load, resulting principal surface 

strains at the center of the diaphragm were oriented in a direction 

parallel to the edges of the diaphragm (Fig. 46a). The largest prin­

cipal compressive strains were oriented parallel to the steel deck 

corrugations. When the diaphragms were subjected to in-plane loading 
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only, principal surface strains were oriented in a direction measuring 

approximately 45° from a line (X-axis) parallel to the north or south 

edges (Fig. 46b). Principal tensile strain magnitudes were equal to 

principal compressive strain magnitudes. When the diaphragms were sub­

jected to both in-plane and vertical load, principal tensile strains 

were oriented in a direction measuring less than 45° from the X-axis 

(Fig. 46c1. Principal concrete surface strains due to in-plane load 

were calculated by subtracting the strain measurements obtained after 

the vertical load was applied from the subsequent strain measurements 

and then using these adjusted strain measurements to calculate principal 

strains. 

Principal tensile surface strains, due to in-plane load, are 

illustrated in Figure 47 by a plot of principal surface strains versus 

in-plane load. Results from Slab 13 are not shown because the rosette 

used on this slab malfunctioned. These measured results indicated that 

a linear relationship exists between the principal tensile strains on 

the concrete surface and the in-plane load. These measured results also 

indicate that the principal tensile strains per unit load on the 

concrete surface are related to the average thickness of the concrete 

slab and the concrete compressive strength. Slabs with larger concrete 

thicknesses experience smaller principal tensile strains per unit load. 

Slabs with higher concrete strengths experience smaller principal 

tensile strains per unit load. This relationship between principal 

tensile strains per unit load and concrete compressive strength is 

probably due to the relationship between modulus of elasticity for 
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concrete and concrete compressive strength. The modulus of elasticity 

for concrete is related to its compressive strength according to 

ACI 318-83 (1). 

Principal concrete surface strains near the edges were negligible 

when the vertical load was applied. When in-plane load was applied, 

these principal strains were equal to principal strains at the center 

of the diaphragm. The orientation of these principal strains became 

random and the magnitude of these strains was significantly reduced 

as soon as slip had occurred near the edges of the diaphragm. 

Embedment gages used on Slab 10 malfunctioned. Embedment gages used 

in the previous research effort (30) on Slabs 7 and 8 indicated that 

strains were constant throughout the thickness of the slab initially, 

but not near and not after ultimate load. 

Deck strains on all diaphragms were small until slip between the 

deck and concrete occurred. Because of the geometry of the steel deck, 

strains perpendicular to the corrugations and away from the edges 

remained negligible throughout the entire test. Deck strains parallel 

to the corrugat~ons and away from the edges remained small until 

ultimate load was reached and large vertical displacements occurred. 

After ultimate, the largest deck strains were oriented in a direction 

parallel to the deck corrugations. These deck strains became quite 

large on slabs that were subjected to vertical load. Some of these 

deck strains exceeded the yield strain when the frame was cycled at a 

displacement limit of 1.000 in. 
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Uniaxial strain gages mounted on the webs of the W24 X 76 edge 

beams were used to measure strains along the beams. These measure­

ments were used to determine moments and axial forces along the edge 

beams. Axial strains measured along the edge beams while testing 

Slab 12 are shown in Figure 48. Results indicated that the axial 

load varied linearly before ultimate but became non-linear after 

ultimate. Based on these results, shear forces are assummed to be 

transferred uniformly from the beams to the diaphragm prior to ultimate 

load but non-uniformly after ultimate load. The proposed analysis 

in Section 5 does not require an understanding of this post-ultimate 

behavior. 

4.3. Summary of Experimental Results 

Ultimate loads, initial stiffnesses and failure modes are listed 

in Table 4. This list contains the results from all diaphragms tested 

to date. Ultimate loads were determined by the data acquisition sys­

tem (DAS). The DAS continuously monitored the in-plane load cells and 

recorded the maximum load and the displacement of the load beam when 

maximum load was reached. Because the load program was based on dis­

placement control, the experimental initial stiffness was defined as 

the slope of a line through the origin and the point on the load­

displacement curve corresponding to the first nominal displacement of 

0.025 in. The use of a aommon displacement provided for a consistent 

stiffness comparison for the same cycle of loading. The following 
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Table 4. Summary of experimental results 

Slab Initial v Failure Designation 
Number Stiffness u 

Mode in Table 1 
(kips/in.) (kips) 

1 1800 168 Diagonal tension 1. a. 1 

2 2000 186 Diagonal tension 1. a. 1 

3 1600 97.8 Deck foldover 2.b.2 

4 1300 87.7 Deck foldover 2.b.2 

5 1700 116 Diagonal tension 1.a.l 

6 2600 147 Interfacial shear parallel 2.a 

7 1500 137 Deck foldover 2.b.2 

8 1100 54.4 Edge fastener failure 3.b.2 

9 1900 220 Diagonal tension 1. a. 1 

10 1700 161 Diagonal tension 1. a.1 

11 1600 95 Interf acial shear parallel 2.a 

12 1800 180 Diagonal tension 1. a .1 

13 1900 250 Diagonal tension 1. a. 1 

14 1900 208 Interf acial shear 2.a, 2.b.l 

15 1300 103 Concrete rib failure 2.b.3 

16 1300 124 Diagonal tension 1. a.1 

17 2200 146 Interfacial shear parallel 2.a 

18 1700 161 Diagonal tension 1. a. 1 
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section includes a summary of experimental results from slabs that 

are of interest to this research study. 

Slabs 6 and 17 had the highest initial stiffness of all slabs 

tested. Both slabs failed in interfacial shear parallel to the 

corrugations and reached nearly the same ultimate load. The only 

differences between Slabs 6 and 17 was that Slab 17 was subjected to 

an applied vertical load of 100 psf and had a lower concrete strength 

than Slab 6. 

Slabs 9 and 13 were the only slabs constructed using cellular 

deck. The primary difference between Slab 9 and Slab 13 was that Slab 

13 was subjected to an applied vertical load of 200 psf prior to 

being loaded in-plane and Slab 9 was not. These slabs had the same 

initial stiffness and both failed in diagonal tension. Slab 13 had 

a higher concrete compressive strength and a higher ultimate capacity. 

Slabs 10, 12 and 18 all failed in diagonal tension. Slabs 10 

and 18 had the same initial stiffness and ultimate capacity. Slab 

12 had a higher concrete strength, initial stiffness and ultimate 

capacity. The primary difference between Slabs 10, 12 and 18 was 

in the amount of applied vertical load. Slab 10 was subjected to no 

applied vertical load. Slabs 12 and 18 were subjected to applied 

vertical loads of 65 and 135 psf, respectively. 

Slab 14 was constructed from the same deck type as Slabs 10, 12 

and 18 but had a larger concrete thickness. Slab 14 was subjected 

to an applied vertical load of 135 psf prior to being loaded in-plane. 

Slab 14 had a higher initial stiffness than Slabs 10', 12 and 18. And 
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unlike the other Deck Type 5 slabs, Slab 14 failed by interfacial shear 

tranverse and parallel to the corrugations. Slab 14 had the highest 

ultimate capacity of any Deck Type 5 slab. 

Slab 15 failed in interfacial shear perpendicular to the 

corrugations. Slab 16 was constructed exactly like Slab 15 but was 

subjected to an applied vertical load of 35 psf prior to being loaded 

in-plane. Slab 16 failed in diagonal tension.· Slabs 15 and 16 had 

the same initial stiffness. 

Vertical load had little effect on the initial stiffness of com-

posite diaphragms. Vertical load had little effect on the ultimate 

capacity of diaphragms that experienced diagonal tension or interfacial 

shear parallel to the corrugations .. Vertical load increased the 

capacity of composite diaphragms that experience interfacial shear 

' transverse to the corrugations.\ All diaphragms experienced some 
' ; 

parallel and transverse slip prior to ultimate. Similar diaphragms 

with applied vertical load experienced less transverse slip than 

diaphragms without applied vertical load. 

To compare the degradation of stiffness, an average cyclic stiff-

ness was defined as the slope of a line between the maximum positive 

and negative load values of the third cycle hysteresis loop at each 

displacement limit as shown in Figure 49. The stiffness degradation 

is illustrated in Figure 50 with a plot of cyclic stiffness versus 

nominal cyclic displacement. The stiffness of the slabs degraded 

quite rapidly. The cyclic stiffness of slabs without applied vertical 

load tended to degrade faster than the cyclic stiffness of similar 
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slabs with applied vertical load. The stiffness of slabs that 

experienced concrete failure tended to degrade faster than the stiff­

ness of slabs that experienced interfacial failure. Slabs that 

experienced interf acial failure tranverse to the corrugations had 

nearly the same rate of stiffness degradation as slabs that experienced 

interfacial failure parallel to the corrugations. 
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5. ANALYTICAL INQUIRY 

5.1. Review of Previous Methods of Analysis 

5.1.1. Methods developed for reinforced concrete diaphragms 

Methods for designing reinforced concrete diaphragms were developed 

by the American Concrete Institute (1) and the Applied Technology 

Council (6). Both methods use a strength design design approach. 

The basic requirement for strength design is that the required strength 

of a structural element must be less than or equal to the design 

strength. Required strength is determined by multiplying expected 

loads by appropriate load factors. Design strength is determined by 

multiplying the nominal strength by an appropriate strength reduction 

factor. 

In both methods, the nominal in-plane shear strength of a rein-

forced concrete diaphragm is given by 

V = A (a Jf: /1000 + p f ) 
CV C y 5-1 

where the coefficient a varies linearly from 3.0 for h/l equal to 1.5 

to 2.0 for h/l equal to 2.0, f~ is the concrete compressive strength, 

p is the shear reinforcement ratio, f is the specified yield strength 
y 

of reinforcement and A is the net area of concrete section bounded 
CV 

by web thickness and length of section in the direction of shear force 

considered. A strength reduction factor of 0.6 is recommended in 

Reference 6. Also, edges around and openings in diaphragms must be 

provided with boundary members unless it is shown that the unit com-

pressive stresses are less than 0.2 f' at the edges, when calculated 
c 
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on an elastic basis for any loading condition including earthquake 

effects (6). Boundary members can consist of reinforced concrete or 

structural steel members encased in, or continuously attached to, 

the diaphragm (6). Methods for determining required strength can 

be found in Reference 6. 

5.1.2. Method developed Qy Pinkham 

Empirical equations for predicting the stiffness and strength of 

steel-deck reinforced concrete diaphragms were developed by C.W. 

Pinkham of S.B. Barnes and associates of Los Angeles, California and 

were published by the Department of Defense in the Tri-Service design 

manual, "Seismic Design of Buildings" (12). A "guided cantilever" 

concept was used in the equation development. The equations, used to 

predict the diaphragm's strength, were based on the capacity of edge 

fasteners and the contribution made by the concrete across the seams. 

Accurate ultimate load predictions were obtained from these 

equations for only a limited number of composite diaphragms (8). One 

possible reason for this limited accuracy is that several potential 

failure modes were not considered in the development of these equations. 

Therefore, an alternate method of analysis was proposed upon completion 

of the first three phases of this overall research project. A review 

of this alternate method is included next. 

5.1.3. Method developed Qy ISU 

An alternate method of analysis for predicting the stiffness and 

strength of steel-deck reinforced concrete diaphragms was included 

in a final report to the National Science Foundation by researchers 
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at Iowa State University's Engineering Research Institute (30). 

This method of analysis was, in part, based on the assumption that 

the transfer of forces from the frame to concrete slab through the 

interface effectively occurs within a relatively narrow band along 

the lengths of the edge beams. Throughout this section, interface 

will mean interface between the steel deck and concrete unless spec-

ified otherwise. 

To calculate the initial in-plane deflections for a composite 

diaphragm, the diaphragm with edge beams was idea.lized as a plate 

girder. The total deflection was then given by 

=/1b+/1 +11 s z 
5-2 

where /;b was the bending deflection of the composite diaphragm to-

gether with the edge beams acting as a plate girder, /1 was the shear 
s 

deflection of the composite web and /1 was the deflection due to z 

deformation in the "edge zone", which included the effects of fastener 

deformations. The bending deflection, /;b' at the free end of the canti­

levered girder was given by 

3(E I + E I ) 
c c s s 

= 5-3 

where V was the applied shear force, a was the length of the cantilever, 

I was the moment of inertia of the edge beams, and I , the moment of s c 

of inertia of the composite web, was based on the average thickness 

of the concrete plus n times the thickness of the steel deck where 
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n = E /E . The shear deflection was given by s c 

11 = 
s 

Va 
G t b 

c e 

v 
K 

s 
5-4 

where t is the average thickness of the concrete plus n times the e s 

thickness of the deck where n = G /G and b was the depth of the s s c 

cantilevered girder. The "edge zone" deflection, /1 , was based on z 

push-off test results. 

Elemental push-off tests were conducted to determine the stiffness 

of the "edge zone" and the ultimate capacity of the interface between 

the steel deck and concrete. Push-off tests corresponding to both 

parallel and transverse sections of the composite diaphragm (Fig. 51) 

were conducted. The push-off model and the composite diaphragm's 

"edge zone" were shown to be subjected to similar interfacial stresses 

due to in-plane loading (30). Results from the push-off tests are 

given in Table 5. Table 5 includes parameters for both this ISU method 

and the proposed method in Section 5.3. 

To develop an equation to predict the initial stiffness, the 

"edge zone" force distribution was assumed as shown in Figure 52. 

The corresponding forces on the edge members are shown in Figure 53. 

The "edge zone" in the linear range was idealized by a series of 

springs, Kt, Kt'' KP and KP, as shown in Figure 54. 

in Figure 53 were then written as 

The forces 

5-5 

where /it and /ip where the relative displacements between the framing 
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Table 5. Results from push-off tests 

Deck Qt Qp 0ut 0 Kt K µt 
Type up p 

(lb/ in) (lb/ in) (psi) (psi) CK/in/in) (K/ in/ in) 

1 454 468 25.2 26.0 47 55 0.70 

2 933 493 51.8 27 .4 65 42 3.53 

3 a a a a a a a -
4 805 773 44.7 42.9 63 37 2.31 

5 627 625 34.8 34.7 72 60 2.54 

6 521 293 28.9 16.3 68 46 0.70 

7 531 563 29.5 31.3 46 63 1. 01 

aData not available due to a shortage of this deck type. 

members and a rigid slab. From statics, the following equations were 

developed 

5-6 

V = (Kb+ K ,1 ) A p p p p 
5-7 

where V is the applied shear force, lt = a' - 2a' 2 /3a and lp = (b 2 + 

3bb' - 2b' 2 )/6a. The values of a' and b' were taken as b/12 and a/12, 

respectively. Assuming small displacements, the relationships between 

At, A and A were given by p z 

At = A/2 + Sa/2 

A = -Sb/2 
p 

S-8 

5-9 
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where 8 is the rotation of the concrete about its center as shown in 

Figure 55. This figure indicates that slip is measured relative to 

the frame in its original position. An accurate figure would indicate 

that slip is measured relative to the frame in its displaced position. 

Also, this figure indicates that the concrete slab rotates more than 

the frame. Experimental results indicate that the concrete slab moves 

relative to the frame and steel deck as shown in Figure 56. By using 

this figure, the relationships between At' AP and Az are given 

by the following equations. 

At = A/2 - 8a/2 

A = 8b/2 
p 

5-10 

5-11 

By using either equations 5-8 and 5-9 or 5-10 and 5-11 and eliminating 

8, the following equation for A
2 

in terms of AP and At is developed 

Finally, by substituting for AP and At in Equation 5-12 and assuming 

that Kt= Kt •and Kp = Kp', the "edge zone" deflection was given by 

the following equation. 

A = 
z 

2V 
+ 

2Va 
K (b2 + b 1 ) 

p p 

v 
K 

z 
5-13 

The stiffness factors KP and Kt were obtained from push-off tests 

and are listed in Table 5. Since no push-off tests were performed on 

studded specimens, the values of K and K for studded slabs were 
p t 
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calculated using empirical load-slip equations for studs developed by 

Ollgaard, Slutter and Fisher (22). The total initial stiffness of the 

composite diaphragm was given by 

KT = 1 

Kb 

where Kb is the 

1 
1 1 

+ K + K 
s z 

bending stiffness 

5-14 

of the composite diaphragm together 

with edge beams acting as a plate girder, K is equal to the shear 
s 

stiffness of the composite web and K is equal to the "edge zone" z 

stiffness. 

The ultimate capacity of composite diaphragms was expected to be 

limited by one of three things: the shear capacity of the concrete 

web, the capacity of the interface between the concrete and the steel 

deck or the strength of the edge fasteners. Ultimate capacity based 

on diagonal tension failure of the concrete web was calculated using 

the shear wall equation from the American Concrete Institute (ACI) 

Code 318-83 (1). Assuming no axial loads, this equation was written as 

v = 3. 3 ff'; h d / 1000 5-15 

In applying this equation, h was taken as the effective concrete thick-

ness, t , where t = t + n t and the value of d was taken as the e e a s s 

width of the diaphragm. Equation 5-15 was then written as follows. 

v = 3. 3 ff' t b / 1000 
c e 

5-16 
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To predict the capacity of diaphragms that experience interfacial 

failure at ultimate, the "edge zone" force distribution was assumed to 

approach that shown in Figure 57 at ultimate load. The related forces 

on the framing members are shown in Figure 58. From statics, the 

following equations were developed 

v = qp b + q ,1 ' p p 

where lt' = 2a'-2a' 2 /a and 1 , = (b2+ 4bb' - 4b' 2)/4a. 
p 

5-17 

5-18 

The limiting 

values of qt and qt' were assumed to be equal to Qt, the maximum load 

from the transverse push-off tests. The limiting value of q was 
p 

assumed to be Q , the maximum load from the parallel push-off tests. p 

The limiting value of q , was assumed to be the sum of two forces. p 

The first of these two forces was the cohesion between the concrete 

and steel deck. The second of these forces was a frictional force, 

equal in magnitude to the normal force against the up corrugations, 

qt' times the coefficient of friction between the steel deck and 

concrete. In equation form. 

Q,=Q+µqt p p 5-19 

By substitution of Equation 5-17 into Equation 5-19 and assuming that 

qt= qt'' the following equation was obtained 

= µV 
Qp + ~(-b""+-'--l~t-.~) 5-20 
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where V is the applied shear force on the diaphragm and Q is the 
p 

maximum load per unit length from the parallel push-off tests. 

Finally, the ultimate capacity of diaphragms that experience inter-

facial shear failure at ultimate was given by the following equation. 

V = minimum 

[

(b + 1 ,) (b + lt,)] 

Qp (b + lt' - µlp,) 

5-21 

A value of 0.7 was used forµ based on ACI 318-83, 11.7.5 (1). 

The ultimate capacity based on edge fastener capacity was 

determined by assuming that the force distribution shown in Figure 57 

existed at ultimate. Ultimate capacity was assumed to be controlled 

by either edge fastener capacity in the corners or along the edge 

beams depending on the edge fastener spacing. The edge fast~ners 

near the corners were expected to fail if the vector sum of perpen-

dicular forces acting on them exceeded their capacity. The capacity 

of edge fasteners near the corners in the perpendicular "edge zone11 

was given by 

) 
2 ( le nc) 2] 1/2 nb + 7(b,..--+~l~P~,~)~-

5-22 v = 

where Qut is the ultimate strength of a fastener with the deck perpen­

dicular to the edge, nb and nb' are the numbers of fasteners in lengths 

b and 1 , respectively, and 1 was taken as b' or the distance from the c c 
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edge of the slab to a point halfway between the connectors at the corner 

and the middle connectors, whichever is less. The ultimate capacity 

of fasteners, near the corners, in the parallel "edge zone" was given by 

v = 
a 

1 ') p )
2 (~a'~na' )2] 1/2 na + (b+lt,) 

5-23 

where n and n , are the numbers of connectors in lengths a and a', a a 

respectively, and Q is the ultimate strength of a fastener with up 

the deck parallel to the edge. Also, if there were enough middle 

fasteners to carry additional load after the corner fasteners had 

failed, the ultimate capacity was given by 

V = Q (n - 2n ,) up a a 5-24' 

When studs were used, Qup and Qut were determined using empirical 

equations for studs developed by Ollgaard, Slutter and Fisher (22). 

When arc spot welds were used, Q t and Q were assumed to be equal u up 

to Q , the ultimate strength of one weld. The ultimate strength of u 

one weld was determined using AISI and AWS specifications (3, 9) and 

was given by 

Q = minimum 
u 

2.2 ts da oult tearing of the deck 

5-25 

7r d 
2 

F /4 e xx shearing of the weld 

where t is equal to the net thickness of the deck (single or double s 
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sheet minus any coatings), d is equal to the average diameter of the a 

weld (surface diameter minus the thickness of the deck), oult is the 

ultimate tensile strength of the steel, d is the effective diameter e 

of fused weld area (0.7 x surface diameter minus 1.5 x deck thickness), 

and F is the arc spot weld strength level designation in AWS elec­xx 

trode classification. Finally, the ultimate strength based on edge 

fastener failure was given by the following equation. 

Equation 5-22 

V = minimum Equation 5-23 5-26 

maximum 

Equation 5-24 

This ISU method of analysis considers several potential failure 

modes. The equations usually produced reasonable predictions of the 

diaphragm's initial stiffness and ultimate capacity. A critical 

review of this method of analysis is included next. 

The equation used to predict the ultimate capacity based on 

diagonal tension failure of the concrete web is a modified version 

of the shear wall equation from the ACI Code 318-83 (1). This shear 

wall equation was based on the assumption that failure occurs when 

a maximum principal tensile stress of 4 K is reached (11). In a c 

shear wall, the shear stress distribution was assumed parabolic with 

the maximum shear stress as a function of load given by the following 

equation 

v = max 3 v 0000) I 2 1 h 5-27 
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where 1 is the width of the shear wall and h is the depth. By sub­

stituting d/0.8 for 1 and 4Jf'; for vmax' the shear wall equation 

was developed. 

v = h d 3.3 h d 5-28 

This empirical equation would only apply to composite diaphragms 

if all the assumptions made in its development were still valid. 

Because of the relatively large edge beams on the test frame, the 

actual shear distribution, in the concrete slab, is nearly uniform 

and not parabolic. Therefore, this shear wall equation does not apply 

to composite diaphragms with large edge beams. Also, in applying the 

shear wall equation, h was taken as the effective concrete thickness, t , 
e 

where t was equal to t + n t where t is the average thickness of e a s s a 

the concrete, n is the ratio of shear moduli for the steel deck and s 

concrete, and t is the thickness of the steel. By including the s 

term, n t , an assumption that the steel is straining as much as the s s 

concrete in shear at ultimate has been made. A new, alternate 

assumption would be that when diagonal tension failure of the concrete 

web occurs, localized interfacial failure (in a narrow band on either 

side of the diagonal tension crack) occurs simultaneously. The inter-

facial capacity of this narrow band is assumed as small when compared 

with the capacity of the concrete. 

Interfacial shear capacity equations used results from elemental 

push-off tests to predict the interfacial capacity of the composite 
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diaphragms. To be valid, 'these equations must consider any differences 

that exist between the push-off model and the composite diaphragm. 

The "edge zone" in the composite diaphragm and the push-off model were 

shown to be subjected to similar in-plane loads (30). However, no 

consideration of vertical loads was included. The transverse push-off 

model is not subjected to nearly the same amount of vertical load as 

the transverse "edge zone" of the composite diaphragm. The effect of 

vertical load needs to be included in the predictive equations. 

The edge fastener capacity equations seem to produce reasonable 

predictions. However, since failure of the edge fasteners has con­

trolled the ultimate capacity only once, no evaluation of the validity 

of these equations was made. These proposed equations were tentative. 

Results from the composite diaphragm tests, reported in Chapter 4, 

indicated that vertical load had no significant effect on the initial 

stiffness of composite diaphragms. The ISU method of analysis produced 

reasonable predictions of the diaphragm's initial stiffness. Therefore, 

no alternate methods for predicting the initial stiffness of composite 

diaphragms were developed as part of this study. These experimental 

results also indicated that gravity load had a significant effect on 

the ultimate capacity of some composite diaphragms, depending on the 

mode of failure. This gravity load effect was not considered in the 

ISU method of analysis. Therefore, an alternate method of analysis 

for predicting the ultimate capacity of composite diaphragms was 

developed and is included next. 
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5.2. Proposed Method of Analysis 

This proposed method of analysis is based on the following 

assumptions. The ultimate capacity o.f composite diaphragms can be 

limited by the capacity of the concrete slab, steel deck, support 

beams or the interfaces between these elements. The interfaces are 

idealized as sets of translational springs oriented normal to the 

plane of the interface and parallel and perpendicular to the corru­

gations in the plane of the interface. In-plane loads are transferred 

from the support beams through the interface between the support beams 

and the steel deck, through the steel deck, through the interface 

between the steel deck and concrete, and into the concrete slab as 

in-plane shear. 

Diagonal tension failure of the concrete slab occurs when th.e 

tensile strength of the concrete is exceeded. Several empirical 

equations that relate the tensile strength of concrete to its com­

pressive strength have been developed (23). An empirical equation 

developed by Cardenas, Hanson, Corley and Hognestad (11) for shear 

walls, states that web-shear failure occurs when a principal tensile 

stress of 4,;-ro; causing web-shear cracking is reached. This empirical 

equation was based on the results from several different research 

projects on shear walls and is used as the basis for the shear wall 

equation currently used in the ACI Code 318-83 (1). 

To develop an equation to predict the capacity of diaphragms 

that experience diagonal tension failure of the concrete web, the 
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stress distribution, in the concrete slab, was assumed to be uniform 

(Fig. 59) at ultimate. With this stress distribution, the concrete 

is subjected to a uniform shearing stress distribution on any plane 

oriented parallel to the edges of the concrete slab. Principal 

tensile and compressive stresses, equal in magnitude to the shearing 

stresses, are assumed to occur on planes oriented 45° from the edges 

of the concrete slab (Fig. 59). Failure of the concrete web is 

assumed to occur when the maximum shearing stress and principal 

stresses reach a magnitude greater than or equal to 4 ff . With 
c 

these assumptions, the ultimate capacity of diaphragms that fail in 

diagonal tension is given by 

v = 4/f: t b / 1000 5-29 c a 

where V is the predicted capacity, f' is the concrete compressive 
c 

strength, t is the average thickness of the concrete, b is the width a 

of the diaphragm, and 1000 is a conversion factor from pounds to kips. 

Experimental results, reported in Section 4, indicated that vertical 

load had no significant effect on the ultimate capacity of diaphragms 

that experience diagonal tension failure. Therefore, no consideration 

of flexural stresses caused by vertical load were included in the 

development of Equation 5-29. 

When interfacial shear failure transverse to the corrugations 

·occurs, the frame moves relative to the concrete as shown in Figure 

60. When non-cellular deck types are used, movement between the steel 
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Figure 59. Stresses on the concrete slab 
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Figure 60: Interfacial failure perpendicular to the corrugations 

Figure 61. Interfacial failure zone 
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deck and concrete is assumed to occur only in the "edge zone" (Fig. 61). 

This behavior occurs because the steel deck is not as strong as the 

interface perpendicular to the corrugations. 

Elemental tests were conducted to determine the stiffness and 

strength of the interface between the steel deck and concrete. The 

transverse elemental tests are assumed to model a section along the 

north or south edges of the composite diaphragm (Fig. 51). On the 

elemental specimens, the deck moves relative to the concrete as 

shown in Figure 62. The "edge zone" width, a', varied with deck type 

but was approximately equal to 18 in. for all non-cellular deck types. 

A typical load-displacement curve from a transverse push-off test is 

shown in Figure 63. Transverse interfacial stresses and edge forces 

on the steel deck are assumed to be as shown in Figure 64 when Point 

A on the load-displacement curve (Fig. 63·) is reached. Whi1e moving 

to Point B on the load-displacement curve, additional interfacial area 

reaches ultimate. At ultimate (Point B) on the load-displacement 

curve, the transverse interfacial stress distribution is assumed to 

approach that shown in Figure 65. Interfacial stresses parallel to 

the corrugations existed but are not shown on this figure. Based on 

this stress distribution, the ultimate interfacial capacity transverse 

to the deck corrugations per unit of projected area is given by 

a = Q / a' ut t 
5-30 

where Qt is the force per unit length required to cause failure 

of the elemental push-off tests. This force per unit length, Qt, 
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Figure 63. Load-displacement diagram from transverse push-off test 
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Figure 64. Transverse interfacial stresses and edge forces on the 
steel deck corresponding to Point A on the load-displace­
ment diagram from push-off test 
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Figure 65. Transverse interfacial stresses and edge forces on the 
steel deck corresponding to Point B (ultimate) on the 
load-displacement diagram from push-off test 
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actually represents the force required to cause interfacial failure 

and to deform the steel deck. By using the above equation, the force 

required to deform the steel deck is included as part of the expected 

interfacial capacity. 

On composite diaphragms, the interface between the steel deck and 

concrete is idealized as a series of translational springs. With this 

idealization, interfacial stresses only exist in areas where interfacial 

movement occurs and the amount of interfacial stress is directly related 

to the amount of interfacial movement. When interfacial failure trans-

verse to the corrugations occurs, the transverse interfacial stresses 

on the steel deck only exist in the "edge zone" (Fig. 66). Parallel 

interfacial stresses exist but are not shown on this figure. The 

corresponding forces on the edge beams are shown in Figure 67. By 

summing forces on the north edge beam in the transverse direction, 

an equation for the ultimate capacity of composite diaphragms that 

experience interfacial failure, transverse to the corrugations, is 

developed 

V = o a'(b + 4(a/2-a') 2/3a) ut 5-31 

where o is the ultimate capacity of the interface per unit of ut 

projected area and a' is the transverse 11 edge zone" width. 

This prediction for diaphragms that experience interfacial shear 

failure transverse to the corrugations must be corrected for a 

difference in out-of-plane stress that exists between the push-off 
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Figure 66. Transverse interfacial stresses and edge forces on the 
steel deck 
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Figure 67. Transverse forces on the edge beams 
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model and the composite diaphragm. Previous research has shown that 

steel-deck reinforced concrete slabs, simply supported on all four 

sides, behave as one-way slabs (29). By assuming that vertical load 

is transferred in one direction through the interface in the transverse 

"edge zone'', the normal load transferred through the interface at each 

end is given by 

5-32 

where wc is the weight of the concrete in ksi and w
1 is any applied 

vertical load in ksi. Then, the shear required to cause interfacial 

shear failure, transverse to the corrugations, is given by the follow-

ing equation 

V =a ta'(b + 4(a/2 - a') 2/3a) + µ (w + w
1)ba/2 u t c 5-33 

where µt is the cell force coefficient. This cell force coefficient 

relates the amount of vertical load to its contribution to the in-plane 

capacity of the diaphragm. The value of µt is a function of the 

failure mode that occurs at ultimate. When Failure Mode 2.b.l (pop-up) 

occurs, a conservative value for µt was taken as the slope of the 

inclined web as shown in Figure 68. This value was based on the 

horizontal force required to push the concrete up the inclined web 

against the action of gravity. Any contribution made by the frictional 

force between the steel deck and concrete has been assumed as included 

in the out term. When Failure Mode 2.b.2 (deck foldover) occurs, µt 
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Figure 68. Determination of µt 
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Figure 69. Interfacial failure parallel to the corrugations 



www.manaraa.com

118 

was assumed to be equal to 0.7 based on ACI Code 318-83, 11.7.4.3. 

By using this value for µt' the capacity was increased only because 

of the frictional force between the steel deck and concrete. When 

Failure Mode 2.b.3 (concrete rib failure) occurs, µt was given by 

µt = (1.4 r + 0.7 s) / (r + s) 5-34 

where r is the width of one concrete rib and s is the width of one top 

section of steel (Fig. 68), 1.4 is based on ACI Code 318-83 for concrete 

placed monolithically, and 0.7 is based on the same code for concrete 

placed against steel. When a combination of the above failure modes 

occurs at ultimate, various values for µt could be used. A conserva­

tive estimate of ultimate capacity would be obtained by using the 

smallest possible value for µt. 

When interfacial shear failure parallel to.the corrugations occurs, 

the frame moves relative to the concrete as shown in Figure 69. Move­

ment between the steel deck and concrete occurs across the entire 

interface. This behavior occurs because the strength of the steel deck 

in the direction parallel to the corrugations is greater than the 

strength of the interface in this direction. 

Elemental tests were conducted to determine the stiffness and 

capacity of the interface between the steel deck and concrete. Parallel 

elemental tests are assumed to represent a section along the east or 

west edges of the diaphragm (Fig. 51). On the parallel elemental 

specimens, the steel deck moves relative to the concrete as shown in 
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Figure 70. A typical load-displacement curve from a parallel push -off 

test is shown in Figure 71. The load carrying capacity increased 

linearly with respect to displacement p~ior to ultimate. When u l timate 

was reached the load carrying capacity immediately decreased. Inter-

facial stresses parallel to the corrugations on the steel deck are 

assumed to be as shown in Figure 72 at ultimate. Interfacial stresses 

transverse to the corrugations aiso exist but are not included on this 

figure. Based on this stress distribution, the ultimate interfacial 

capacity per unit of projected area is given by 

a = 2 Q I b up p 5-35 

where b is the width of the push-off specimen and Q is the force per p 

unit length required to cause failure of the elemental push-off test. 

This force, Q , actually represents the force required to cause p 

interfacial failure and to deform the steel deck. By using the above 

equation, the force required to deform the steel deck is included as 

part of the expected interfacial capacity. 

When a composite diaphragm experiences interfacial fai lure par-

allel to the deck corrugations, the parallel interfacial stresses and 

edge forces are assumed to be as shown in Figure 73. Transverse 

interfacial stresses also exist but are not shown on this figure. The 

corresponding forces of the support beams are as shown i n Figure 74 . 

By summing moments on the south reaction block, an equation for the 

ultimate capacity of composite diaphragms that experience interfacial 
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failure parallel to the corrugations is developed 

o b
2 I 6 up 5-36 

where o is the ultimate interfacial capacity parallel to the corru­up 

gations. 

This equation does not include the effects of gravity load on the 

ultimate capacity and must be modified. Gravity load is expected to 

be transferred one-way to the transverse edges of the diaphragm. The 

normal interf acial forces generated by the gravity load are assumed to 

be uniformly distributed along the transverse edge. The total distrib-

uted load along both transverse edges is given by 

5-37 

where wc is the weight of the concrete in ksi and w1 is any applied 

vertical load in ksi. Frictional forces generated when the concrete 

moves relative to the steel deck are also assumed to be uniformly 

distributed. By summing moments on the south reaction block, an 

equation to predict the ultimate capacity of composite diaphragms 

that experience interfacial failure parallel to the corrugations is 

given by 

5-38 

where V is the predicted ultimate capacity in kips and µ is the 
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coefficient of friction between the steel deck and concrete. This 

coefficient of friction,µ, is assumed to be equal to 0.7 based on 

ACI Code 318-83 (1), 11.7 .4.3. 

Cellular deck is relatively rigid in both the parallel and trans-

verse directions. When this deck type i s used and either type of 

interfacial _failure occurs, movement between the steel deck and concrete 

occurs across the entire interface. The ultimate capacity of composite 

diaphragms constructed from cellu lar deck, that experience interfacial 

failure transverse to the corrugations, can be predicted by using an 

equation similar to the one developed for interfacial failure parallel 

to the corrugations. The ultimate -capacity of diaphragms, constructed 

from cellular deck, that experience interfacial failure transverse to 

the corrugations is given by 

v = o ba/6 + µt(w + w
1
)ba/2 ut c 

5- 39 

where µt is the cel l force coefficient as previously defined. The 

effect of gravity load on interfacial capacity i s t he same for both 

cellular and non-cellular deck types. The ultimate interfacial capacity 

of diaphragms, constructed from non-cellular deck types, is given by 

the follow ing equation. 

Equation 5- 38 

V = minimum 5-40 

Equation 5-33 
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The ultimate interfacial capacity of diaphragms, constructed from 

cellular deck types, is given by the following equation. 

Equation 5-38 

V = minimum 5-41 

Equation 5-39 

The ultimate capacity of diaphragms that experience edge fastener 

failure can be calculated using the ISU method of analysis. The effects 

of vertical load on edge fastener capacity were not investigated as part 

of this study. 

These proposed equations were designed to be used in a strength 

design method. Nominal in-plane shear strength of a diaphragm could 

be determined using these proposed equations. A conservative estimate 

of nominal in-plane shear strength would be obtained by assuming the 

applied gravity load, w
1

, is equal to zero. Design in-plane shear 

strength would be determined by multiplying the nominal in-plane shear 

strength by an appropriate strength reduction factor. Additional 

testing and a reliability study must be completed before an appropriate 

strength reduction factor can be proposed. 

5.3. Comparison of Experimental and Analytical Results 

The experimental initial stiffnesses and the stiffnesses predicted 

by ISU equations and Tri-Service equations are listed in Table 6. The 

ISU equations are based on the assumption that the diaphragm together 

with edge beams can be idealized as a plate girder. The total stiff-
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Table 6. Experimental versus predicted initial stiffness 

Stiffness predicted by: 
Slab Experimental ISU Equations Tri-Service Equations 
Number (k/ in) (k/in) (k/ in) 

1 1800 3000 4500 

2 2000 2900 4300 

3 1600 1600 2900 

4 1300 1500 2600 

5 1700 1400 1600 

6 2600 1900 3900 

7 1500 1600a 4600 

8 1100 1100 3400 

9 1900 1600 7000 

10 1700 1800 3100 

11 1600 1600 1100 

12 1800 1800 3200 

13 1900 1600 7100 

14 1900 2100 5200 

15 1300 1400 1700 

16 1300 1400 1700 

17 2200 1800 3800 

18 1700 1700 3000 

aCalculated using push-off test results for Deck Type 1. 
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ness is then a function of the bending stiffness of the equivalent 

plate girder, the shear stiffness of the composite web, and the stiff­

ness of the "edge zone". The "edge zone" stiffness was based on results 

from elemental push-off tests. Since no push-off tests were completed 

on studded specimens, the "edge zone" stiffness of studded diaphragms 

was calculated using empirical load slip equations for studs given by 

Ollgaard, Slutter and Fisher (22). Studs were used on Slabs 1, 2 and 8. 

Stiffness predictions for Slabs 1 and 2 were not very good. Stiffness 

predictions for the rest of the slabs were good. Stiffness predictions 

using the Tri-Service equations were not very good. 

Experimental and predicted ultimate loads based on the ISU 

equations and the Tri-Service equations are given in Table 7. The 

ISU equations include the consideration of four possible failure 

modes. Only two possible failure modes are considered on studded 

specimens because interfacial failure does not occur when studs are 

used. The lowest prediction calculated corresponds to the failure 

mode that will occur first and is used as the predicted ultimate 

strength of the diaphragm. The Tri-Service equations produced good 

predicted ultimate strengths for only a few of the diaphragms. One 

possible reason for this limited accuracy is that several potential 

failure modes were not considered in the equation development. The 

ISU equations produced good predicted strengths for most of the 

diaphragms but tended to predict too low a value for the transverse 

interfacial slip mode of failure. This probably occurred because the 
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Table 7. Experimental versus predicted ultimate loads 

ISU Equations Tri-Service 
Slab Experimental Mode 1 Mode 2a Mode 2b Mode 3 Equations 
Number (kips) (kips) (kips) (kips) (kips) (kips) 

1 168 182 a a 448 a 

2 186 181 a a 490 a 

3 98 166 139 94 145 104 

4 88 148 139 94 145 93 

5 116 115 147 194 182 82 

6 147 295 147 194 290 196 

7 137 186 139b 94b 275 123 

8 54 146 a a 80 a 

9 220 201 230 167 261 146 

10 161 150 186 130 255 99 

11 95 163 87 108 345 96 

12 180 154 186 130 255 101 

13 250 221 230 167 261 150 

14 208 255 186 130 255 166 

15 103 116 168 110 346 85 

16 124 117 168 110 346 85 

17 146 288 147 194 290 191 

18 161 145 186 130 255 97 

a Does not apply . 

bCalculated using push-off test results for Deck Type 1. 
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ISU equations did not consider the effects of gravity load on composite 

diaphragm behavior. 

The experimental and predicted strengths based on the proposed 

equations and the ISU equations are given in Table 8. The proposed 

equations are similar to the ISU equations but include a consideration 

of gravity load effects. These proposed equations produced good 

predicted strengths and failure modes for most of the diaphragms. The 

difference between the predicted ultimate capacity and experimental 

ultimate capacity was less than 17 percent for all slabs except Slabs 

1, 7 and 8. The predicted ultimate capacity for Slab 1 was 25 percent 

greater than the measured experimental capacity. The predicted ultimate 

capacity for Slab 7 was 25 percent less than the measured experimental 

capacity. The predicted ultimate capacity for Slab 8 was 48 percent 

greater than the measured experimental capacity. Predictions for Slab 

8 were calculated using the ISU equations for edge fastener failure. 

Slabs 1 and 2 failed in diagonal tension prior to reaching the 

load predicted by the proposed equations. One possible reason for this 

behavior would be that the studs generated discrete regions of high 

stress that cause these diaphragms to fail prematurely. Slabs 3 and 4 

failed in transverse interfacial shear. This failure mode was pre­

dicted by the proposed equations. Transverse elemental tests for 

Deck Types 2, 4, and 5 indicated that pop-up failure would occur if 

failure transverse to the corrugations occurred. Thus, a conservative 

value for µt was taken as the slope of the inclined web for slabs 

constructed from these deck types. Slabs 6, 11, and 17 failed 
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Table 8. Experimental versus predicted ultimate loads 

Proposed Equations ISU 
Slab Experimental Mode ·1 Mode 2a Mode 2b Equations 
Number (kips) (kips) (kips) (kips) (kips) 

1 168 210 a a 
182 

2 186 209 a a 
181 

3 98 191 142 103 94 

4 88 169 142 103 94 

5 116 119 149 219 115 

6 147 337 151 237 147 

7 137 207 142b 103b 94 

8 54 165 a a 
80 

9 220 205 234 ?.53 167 

10 161 161 189 150 130 

11 95 181 90 118 87 

12 180 166 192 169 130 

13 250 228 241 306 167 

14 208 287 196 198 130 

15 103 123 171 120 110 

16 124 124 172 124 110 

17 146 329 155 277 147 

18 161 155 196 189 130 

a Does not apply. 

bCalculated using push-off test results for Deck Type 1. 
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in interfacial shear parallel to the corrugations and this behavior 

was predicted. Slabs 5, 9, 12, 13, 16, and 18 failed in diagonal 

tension and this behavior was predicted. No elemental push-off tests 

were completed using Deck Type 3 due to a shortage of this deck type. 

Ultimate capacity predictions for Slab 7 were calculated by using 

results from elemental push-off tests for Deck Type 1. The emboss­

ment pattern on Deck Type 1 was similar to the embossment pattern on 

Deck Type 3. Deck Type 1 was made from 20-gauge steel and Deck Type 

3 was made from 16-gauge steel. The predicted ultimate capacity for 

Slab 7 was conservative. Slab 10 failed in diagonal tension but 

transverse interfacial shear was predicted. This was probably caused 

by using a conservative value for µt. Slab 14 failed in interfacial 

shear both parallel and perpendicular to the corrugations and the 

predicted values for these two failure modes were very close. Slab 

15 experienced transverse interf acial shear and this behavior was 

predicted. 
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6. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

6.1. Summary 

A mechanism was designed and constructed to apply vertical load 

to diaphragms. Ten full-scale diaphragms were tested using a cantilever 

type test frame. Four diaphragms were subjected to in-plane loading 

only and were used as a control series. Six diaphragms were subjected 

to distributed vertical load and in-plane 1oad. These tests were con­

ducted to study the effects of distributed vertical load on composite 

diaphragm behavior. 

Slabs 6 and 17 were constructed from the same deck type and had 

nearly the same concrete thickness. Slab 6 was subjected to no applied 

vertical load and Slab 17 was subjected to an applied vertical load of 

100 psf. The initial stiffness and concrete strength for Slab 17 was 

less than it was for Slab 6. Both slabs failed by interfacial shear 

parallel to the corrugations and reached nearly the same ultimate 

load. 

Slabs 10, 12, and 18 were constructed from Deck Type 5 and had 

nearly the same concrete strength and concrete thickness. Slabs 10, 

12, and 18 were subjected to applied loads of 0, 65, and 135 psf, 

respectively. All of these slabs had nearly the same initial stiff­

ness and ultimate capacity. Slab 12 had a slightly higher concrete 

strength, initial stiffness, and ultimate capacity. All of these 

slabs experienced diagonal tension failure of the concrete web at 

ultimate. The rate of stiffness degradation was less for Slabs 12 

and 18 than for Slab 10. 
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Slab 14 was constructed from Deck Type 5 but had a larger con­

crete thickness than Slab 18. Slab 14 was subjected to an applied 

vertical load of 135 psf just like Slab 18. The initial stiffness 

of Slab 14 was greater than the initial stiffness of Slab 18. Slab 

14 failed by interfacial shear at ultimate and reached a maximum load 

significantly higher than the maximum load for Slab 18. 

Slabs 9 and 13 were both constructed from cellular Deck Type 4 

and had nearly the same concrete thickness. Slab 13 was subjected 

to an applied vertical load of 200 psf in addition and prior to being 

loaded in-plane like Slab 9. These slabs had the same initial stiff­

ness and failed by diagonal tension of the concrete web. Slab 13 

had a higher concrete compressive strength and reached a higher 

ultimate load. The rate of stiffness degradation was less for Slab 13. 

Slabs 15 and 16 were constructed from Deck Type 7 and had nearly 

the same concrete thickness and concrete strength. Slab 16 was sub­

jected to an applied vertical load of 35 psf in addition and prior to 

being loaded in-plane like Slab 15. These slabs had the same initial 

stiffness. Slab 15 experienced concrete rib faliure. Slab 16 failed 

by diagonal tension of the concrete web. Prior to ultimate, the rate 

of stiffness degradation was nearly the same for these slabs. 

A method of analysis was developed to estimate the ultimate 

capacity of steel-deck reinforced concrete diaphragms. This method 

included a consideration of vertical load effects on diaphragm capacity. 

Ultimate strengths were calculated using this proposed method of 

analysis. Initial stiffnesses and strengths were calculated using 
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the ISU method of analysis (30) and the Tri-Service method of analysis 

(12). Results from all three methods were compared with the experi­

mental results. 

6.2. Conclusions 

Distributed vertical load has no significant effect on the 

initial stiffness of composite diaphragms. The initial stiffness of 

similar diaphragms with and without vertical load was nearly the same. 

Distributed vertical load tends to reduce the rate of stiffness degra­

dation. 

Distributed vertical load has very little effect on the ultimate 

capacity of composite diaphragms that fail in diagonal tension. The 

capacity of these slabs is primarily a function of the concrete thick­

ness and strength. Distributed vertical load also has little effect 

of the capacity of composite diaphragms that fail in interfacial shear 

parallel to the corrugations. 

Distributed vertical load has a significant effect on the ultimate 

capacity of composite diaphragms that fail in interfacial shear trans­

verse to the corrugations. The vertical load tends to create a large 

force normal to the interfacial plane in the transverse 11 edge zone". 

This normal force helps to prevent interfacial shear failure. 

The Tri-Service equations produced good ultimate load predictions 

for only a few of the diaphragms. These equations ·do not produce 

satisfactory predictions for certain failure modes. The previously 

proposed ISU equations produced good initial stiffness predictions 
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for most of the diaphragms. The ISU equations also produced good 

ultimate load predictions for some of the diaphragms. These equations 

tend to underestimate the capacity of diaphragms that fail by inter­

facial shear transverse to the corrugations. The proposed equations 

produced good ultimate load predictions for most diaphragms that have 

been tested to date. However, the effects of changes in slab dimen­

sions and edge fastener failures need to be studied further before a 

final design method can be proposed. 

6.3. Recommendations for Continued Study 

Additional experimental research should be completed to determine 

the strength and behavior of composite diaphragms that experience edge 

fastener failure. Composite diaphragms with various fastener spacings 

and types should be tested. This research should also include an in­

vestigation of the effects of gravity load on edge fastener failure. 

Composite diaphragms with different length to width ratios should 

be tested to determine the effects of this variable on strength and 

behavior. Elemental push-off tests for Deck Type 3 should be com­

pleted to determine values for interfacial strength and stiffness. 

Effects of adjoining panels on diaphragm behavior should be investi­

gated by conducting tests with continuous slab elements. Composite 

diaphragms with concentrated gravity loads and pattern gravity loads 

·should be tested to determine the effects of these types of loads on 

diaphragm behavior. 
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Additional analytical and experimental research should be com­

pleted to determine the damping and energy dissipation characteristics 

of steel-deck reinforced concrete diaphragms. Damping is a very 

important variable in the design of structures subjected to seismic 

forces. Further analysis is required to better understand the 

behavior of composite diaphragms as part of an entire structure. 
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